.. code:: ipython3 import numpy as np import torch import torch.nn as nn from matplotlib import pyplot as plt from torch.utils.data.dataloader import DataLoader from torch.utils.data import random_split from tsdart.utils import set_random_seed from tsdart.loss import Prototypes from tsdart.model import TSDART, TSDARTLayer, TSDARTEstimator from tsdart.dataprocessing import Preprocessing .. code:: ipython3 if torch.cuda.is_available(): device = torch.device('cuda') print('cuda is available') else: device = torch.device('cpu') print('cpu') .. parsed-literal:: cpu Quadruple-well potential ~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 # quadruple-well potential # See "RPnet: a reverse-projection-based neural network for coarse-graining metastable conformational states for protein dynamics" for simulation details. # The temperature is specified as 0.4 V = lambda x,y: 1/8*(np.cos(x/6)-3*np.sin(x/3)+5)*(np.cos(y/6)-np.sin(y/3)+3) fig,ax = plt.subplots(1,1,figsize=(4,3)) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1) ax.set_aspect('equal') x = np.arange(0,30+0.1,0.1) y = np.arange(0,30+0.1,0.1) xx,yy = np.meshgrid(x,y) z = V(xx.ravel(),yy.ravel()).reshape(len(y),-1) z = z - z.min() z = z*1/0.4 # temperature is 0.4. z = np.ma.masked_greater(z,10) c = ax.contourf(x,y,z,cmap='rainbow',levels=20,zorder=1) ax.contour(x,y,z,levels=20,zorder=1,colors='black',alpha=0.2) cb = fig.colorbar(c) #ax.grid(True) ax.tick_params(axis="both",labelsize=12,direction='out',length=3.5,width=1.5) cb.ax.tick_params(labelsize=10,length=2.5,width=1.5) cb.set_label('free energy/kT',fontsize=12) ax.set_xlim(0,30) ax.set_ylim(0,30) ax.set_xticks([0,10,20,30]) ax.set_yticks([0,10,20,30]) ax.set_xlabel('x',fontsize=12) ax.set_ylabel('y',fontsize=12) .. parsed-literal:: Text(0, 0.5, 'y') .. image:: output_3_1.png Create dataset ~~~~~~~~~~~~~~ .. code:: ipython3 data = np.load('../data/quadruple-well/quadruple-well.npy') pre = Preprocessing(dtype=np.float32) dataset = pre.create_dataset(lag_time=10,data=data) 2 states model ~~~~~~~~~~~~~~ .. code:: ipython3 set_random_seed(1) val = int(len(dataset)*0.10) train_data, val_data = torch.utils.data.random_split(dataset, [len(dataset)-val, val]) loader_train = DataLoader(train_data, batch_size=1000, shuffle=True) loader_val = DataLoader(val_data, batch_size=len(val_data), shuffle=False) lobe = TSDARTLayer([2,20,20,20,10,2],n_states=2) lobe = lobe.to(device=device) tsdart = TSDART(lobe = lobe, learning_rate = 1e-3, device = device, mode = 'regularize', beta=0.01, feat_dim=2, n_states=2, pretrain=10) tsdart_model = tsdart.fit(loader_train, n_epochs=20, validation_loader=loader_val).fetch_model() .. parsed-literal:: .. code:: ipython3 tsdart_estimator = TSDARTEstimator(tsdart_model) ood_scores = tsdart_estimator.fit(data).ood_scores .. code:: ipython3 # quadruple-well potential V = lambda x,y: 1/8*(np.cos(x/6)-3*np.sin(x/3)+5)*(np.cos(y/6)-np.sin(y/3)+3) fig,ax = plt.subplots(1,1,figsize=(4,3)) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1) ax.set_aspect('equal') x = np.arange(0,30+0.1,0.1) y = np.arange(0,30+0.1,0.1) xx,yy = np.meshgrid(x,y) z = V(xx.ravel(),yy.ravel()).reshape(len(y),-1) z = z - z.min() z = z*1/0.4 # temperature is 0.4. z = np.ma.masked_greater(z,10) c = ax.scatter(data[:,0],data[:,1],c=ood_scores,cmap='coolwarm',s=1,alpha=1) cb = fig.colorbar(c) cb.ax.tick_params(labelsize=10,length=2.5,width=1.5) cb.set_label('ood scores',fontsize=12) ax.contour(x,y,z,levels=20,zorder=1,colors='black',alpha=1) ax.tick_params(axis="both",labelsize=12,direction='out',length=3.5,width=1.5) ax.set_xlim(0,30) ax.set_ylim(0,30) ax.set_xticks([0,10,20,30]) ax.set_yticks([0,10,20,30]) ax.set_xlabel('x',fontsize=12) ax.set_ylabel('y',fontsize=12) r=0.1 g=0.1 b=0.2 ax.patch.set_facecolor((r,g,b,.15)) .. image:: output_9_0.png .. code:: ipython3 features = tsdart_model.transform(data,return_type='hypersphere_embs') state_centers = tsdart_estimator.fit(data).state_centers .. code:: ipython3 fig,ax = plt.subplots(1,1,figsize=(4,3)) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1) ax.set_aspect('equal') c = ax.scatter(features[:,0],features[:,1],c=ood_scores,cmap='coolwarm',s=1,alpha=1) cb = fig.colorbar(c) cb.ax.tick_params(labelsize=10,length=2.5,width=1.5) cb.set_label('ood scores',fontsize=12) ax.plot([0,state_centers[0,0]],[0,state_centers[0,1]],linewidth=2,color='black',linestyle='--') ax.plot([0,state_centers[1,0]],[0,state_centers[1,1]],linewidth=2,color='black',linestyle='--') ax.tick_params(axis="both",labelsize=12,direction='out',length=3.5,width=1.5) ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_xticks([-1,0,1]) ax.set_yticks([-1,0,1]) ax.set_xlabel('z1',fontsize=12) ax.set_ylabel('z2',fontsize=12) r=0.1 g=0.1 b=0.2 ax.patch.set_facecolor((r,g,b,.15)) .. image:: output_11_0.png 3 states model ~~~~~~~~~~~~~~ .. code:: ipython3 set_random_seed(1) val = int(len(dataset)*0.10) train_data, val_data = torch.utils.data.random_split(dataset, [len(dataset)-val, val]) loader_train = DataLoader(train_data, batch_size=1000, shuffle=True) loader_val = DataLoader(val_data, batch_size=len(val_data), shuffle=False) lobe = TSDARTLayer([2,20,20,20,10,2],n_states=3) lobe = lobe.to(device=device) tsdart = TSDART(lobe = lobe, learning_rate = 1e-3, device = device, mode = 'regularize', beta=0.01, feat_dim=2, n_states=3, pretrain=10) tsdart_model = tsdart.fit(loader_train, n_epochs=20, validation_loader=loader_val).fetch_model() .. parsed-literal:: .. code:: ipython3 tsdart_estimator = TSDARTEstimator(tsdart_model) ood_scores = tsdart_estimator.fit(data).ood_scores .. code:: ipython3 # quadruple-well potential V = lambda x,y: 1/8*(np.cos(x/6)-3*np.sin(x/3)+5)*(np.cos(y/6)-np.sin(y/3)+3) fig,ax = plt.subplots(1,1,figsize=(4,3)) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1) ax.set_aspect('equal') x = np.arange(0,30+0.1,0.1) y = np.arange(0,30+0.1,0.1) xx,yy = np.meshgrid(x,y) z = V(xx.ravel(),yy.ravel()).reshape(len(y),-1) z = z - z.min() z = z*1/0.4 # temperature is 0.4. z = np.ma.masked_greater(z,10) c = ax.scatter(data[:,0],data[:,1],c=ood_scores,cmap='coolwarm',s=1,alpha=1) cb = fig.colorbar(c) cb.ax.tick_params(labelsize=10,length=2.5,width=1.5) cb.set_label('ood scores',fontsize=12) ax.contour(x,y,z,levels=20,zorder=1,colors='black',alpha=1) ax.tick_params(axis="both",labelsize=12,direction='out',length=3.5,width=1.5) ax.set_xlim(0,30) ax.set_ylim(0,30) ax.set_xticks([0,10,20,30]) ax.set_yticks([0,10,20,30]) ax.set_xlabel('x',fontsize=12) ax.set_ylabel('y',fontsize=12) r=0.1 g=0.1 b=0.2 ax.patch.set_facecolor((r,g,b,.15)) .. image:: output_15_0.png .. code:: ipython3 features = tsdart_model.transform(data,return_type='hypersphere_embs') state_centers = tsdart_estimator.fit(data).state_centers .. code:: ipython3 fig,ax = plt.subplots(1,1,figsize=(4,3)) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1) ax.set_aspect('equal') c = ax.scatter(features[:,0],features[:,1],c=ood_scores,cmap='coolwarm',s=1,alpha=1) cb = fig.colorbar(c) cb.ax.tick_params(labelsize=10,length=2.5,width=1.5) cb.set_label('ood scores',fontsize=12) ax.plot([0,state_centers[0,0]],[0,state_centers[0,1]],linewidth=2,color='black',linestyle='--') ax.plot([0,state_centers[1,0]],[0,state_centers[1,1]],linewidth=2,color='black',linestyle='--') ax.plot([0,state_centers[2,0]],[0,state_centers[2,1]],linewidth=2,color='black',linestyle='--') ax.tick_params(axis="both",labelsize=12,direction='out',length=3.5,width=1.5) ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_xticks([-1,0,1]) ax.set_yticks([-1,0,1]) ax.set_xlabel('z1',fontsize=12) ax.set_ylabel('z2',fontsize=12) r=0.1 g=0.1 b=0.2 ax.patch.set_facecolor((r,g,b,.15)) .. image:: output_17_0.png 4 states model ~~~~~~~~~~~~~~ .. code:: ipython3 set_random_seed(1) val = int(len(dataset)*0.10) train_data, val_data = torch.utils.data.random_split(dataset, [len(dataset)-val, val]) loader_train = DataLoader(train_data, batch_size=1000, shuffle=True) loader_val = DataLoader(val_data, batch_size=len(val_data), shuffle=False) lobe = TSDARTLayer([2,20,20,20,10,3],n_states=4) lobe = lobe.to(device=device) tsdart = TSDART(lobe = lobe, learning_rate = 1e-3, device = device, mode = 'regularize', beta=0.01, feat_dim=3, n_states=4, pretrain=10) tsdart_model = tsdart.fit(loader_train, n_epochs=20, validation_loader=loader_val).fetch_model() .. parsed-literal:: .. code:: ipython3 tsdart_estimator = TSDARTEstimator(tsdart_model) ood_scores = tsdart_estimator.fit(data).ood_scores .. code:: ipython3 # quadruple-well potential V = lambda x,y: 1/8*(np.cos(x/6)-3*np.sin(x/3)+5)*(np.cos(y/6)-np.sin(y/3)+3) fig,ax = plt.subplots(1,1,figsize=(4,3)) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1) ax.set_aspect('equal') x = np.arange(0,30+0.1,0.1) y = np.arange(0,30+0.1,0.1) xx,yy = np.meshgrid(x,y) z = V(xx.ravel(),yy.ravel()).reshape(len(y),-1) z = z - z.min() z = z*1/0.4 # temperature is 0.4. z = np.ma.masked_greater(z,10) c = ax.scatter(data[:,0],data[:,1],c=ood_scores,cmap='coolwarm',s=1,alpha=1) cb = fig.colorbar(c) cb.ax.tick_params(labelsize=10,length=2.5,width=1.5) cb.set_label('ood scores',fontsize=12) ax.contour(x,y,z,levels=20,zorder=1,colors='black',alpha=1) ax.tick_params(axis="both",labelsize=12,direction='out',length=3.5,width=1.5) ax.set_xlim(0,30) ax.set_ylim(0,30) ax.set_xticks([0,10,20,30]) ax.set_yticks([0,10,20,30]) ax.set_xlabel('x',fontsize=12) ax.set_ylabel('y',fontsize=12) r=0.1 g=0.1 b=0.2 ax.patch.set_facecolor((r,g,b,.15)) .. image:: output_21_0.png .. code:: ipython3 features = tsdart_model.transform(data,return_type='hypersphere_embs') state_centers = tsdart_estimator.fit(data).state_centers .. code:: ipython3 r = 1 pi = np.pi cos = np.cos sin = np.sin phi, theta = np.mgrid[0.0:pi:100j, 0.0:2.0*pi:100j] x = r*sin(phi)*cos(theta) y = r*sin(phi)*sin(theta) z = r*cos(phi) plt.rcParams['figure.figsize'] = (5,4) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface( x, y, z, rstride=2, cstride=2, color='c', alpha=0.1, linewidth=100,antialiased=False) ax.plot([0,state_centers[0,0]],[0,state_centers[0,1]],[0,state_centers[0,2]],linewidth=2,color='black',linestyle='--') ax.plot([0,state_centers[1,0]],[0,state_centers[1,1]],[0,state_centers[1,2]],linewidth=2,color='black',linestyle='--') ax.plot([0,state_centers[2,0]],[0,state_centers[2,1]],[0,state_centers[2,2]],linewidth=2,color='black',linestyle='--') ax.plot([0,state_centers[3,0]],[0,state_centers[3,1]],[0,state_centers[3,2]],linewidth=2,color='black',linestyle='--') c = ax.scatter(features[:,0],features[:,1],features[:,2],c=ood_scores[:],s=1,alpha=1,cmap='coolwarm') cb = fig.colorbar(c) cb.ax.tick_params(labelsize=10,length=3,width=1.5) cb.set_label('ood scores',fontsize=10) ax.set_xlim([-1,1]) ax.set_ylim([-1,1]) ax.set_zlim([-1,1]) ax.set_xticks([-1,-0.5,0,0.5,1]) ax.set_yticks([-1,-0.5,0,0.5,1]) ax.set_zticks([-1,-0.5,0,0.5,1],[-1,-0.5,0,0.5,1]) ax.set_aspect("equal") ax.tick_params(axis="both",labelsize=10,direction='out',length=7.5,width=2.5) ax.set_xlabel('z1',fontsize=12) ax.set_ylabel('z2',fontsize=12) ax.set_zlabel('z3',fontsize=12) ax.view_init(elev=15., azim=105) .. image:: output_23_0.png